Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 628156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046031

RESUMO

Brain myeloid cells, include infiltrating macrophages and resident microglia, play an essential role in responding to and inducing neurodegenerative diseases, such as Alzheimer's disease (AD). Genome-wide association studies (GWAS) implicate many AD casual and risk genes enriched in brain myeloid cells. Coordinated arginine metabolism through arginase 1 (Arg1) is critical for brain myeloid cells to perform biological functions, whereas dysregulated arginine metabolism disrupts them. Altered arginine metabolism is proposed as a new biomarker pathway for AD. We previously reported Arg1 deficiency in myeloid biased cells using lysozyme M (LysM) promoter-driven deletion worsened amyloidosis-related neuropathology and behavioral impairment. However, it remains unclear how Arg1 deficiency in these cells impacts the whole brain to promote amyloidosis. Herein, we aim to determine how Arg1 deficiency driven by LysM restriction during amyloidosis affects fundamental neurodegenerative pathways at the transcriptome level. By applying several bioinformatic tools and analyses, we found that amyloid-ß (Aß) stimulated transcriptomic signatures in autophagy-related pathways and myeloid cells' inflammatory response. At the same time, myeloid Arg1 deficiency during amyloidosis promoted gene signatures of lipid metabolism, myelination, and migration of myeloid cells. Focusing on Aß associated glial transcriptomic signatures, we found myeloid Arg1 deficiency up-regulated glial gene transcripts that positively correlated with Aß plaque burden. We also observed that Aß preferentially activated disease-associated microglial signatures to increase phagocytic response, whereas myeloid Arg1 deficiency selectively promoted homeostatic microglial signature that is non-phagocytic. These transcriptomic findings suggest a critical role for proper Arg1 function during normal and pathological challenges associated with amyloidosis. Furthermore, understanding pathways that govern Arg1 metabolism may provide new therapeutic opportunities to rebalance immune function and improve microglia/macrophage fitness.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Arginase/metabolismo , Encéfalo/enzimologia , Perfilação da Expressão Gênica , Microglia/enzimologia , Células Mieloides/enzimologia , Degeneração Neural , Transcriptoma , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Arginase/genética , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Haploinsuficiência , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Mutação , Células Mieloides/patologia
2.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586680

RESUMO

Tauopathies display a spectrum of phenotypes from cognitive to affective behavioral impairments; however, mechanisms promoting tau pathology and how tau elicits behavioral impairment remain unclear. We report a unique interaction between polyamine metabolism, behavioral impairment, and tau fate. Polyamines are ubiquitous aliphatic molecules that support neuronal function, axonal integrity, and cognitive processing. Transient increases in polyamine metabolism hallmark the cell's response to various insults, known as the polyamine stress response (PSR). Dysregulation of gene transcripts associated with polyamine metabolism in Alzheimer's disease (AD) brains were observed, and we found that ornithine decarboxylase antizyme inhibitor 2 (AZIN2) increased to the greatest extent. We showed that sustained AZIN2 overexpression elicited a maladaptive PSR in mice with underlying tauopathy (MAPT P301S; PS19). AZIN2 also increased acetylpolyamines, augmented tau deposition, and promoted cognitive and affective behavioral impairments. Higher-order polyamines displaced microtubule-associated tau to facilitate polymerization but also decreased tau seeding and oligomerization. Conversely, acetylpolyamines promoted tau seeding and oligomers. These data suggest that tauopathies launch an altered enzymatic signature that endorses a feed-forward cycle of disease progression. Taken together, the tau-induced PSR affects behavior and disease continuance, but may also position the polyamine pathway as a potential entry point for plausible targets and treatments of tauopathy, including AD.


Assuntos
Doença de Alzheimer/metabolismo , Poliaminas Biogênicas/metabolismo , Carboxiliases/metabolismo , Proteínas de Transporte/metabolismo , Hipocampo/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Carboxiliases/genética , Proteínas de Transporte/genética , Feminino , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Front Immunol ; 11: 582998, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519806

RESUMO

Alzheimer's disease (AD) includes several hallmarks comprised of amyloid-ß (Aß) deposition, tau neuropathology, inflammation, and memory impairment. Brain metabolism becomes uncoupled due to aging and other AD risk factors, which ultimately lead to impaired protein clearance and aggregation. Increasing evidence indicates a role of arginine metabolism in AD, where arginases are key enzymes in neurons and glia capable of depleting arginine and producing ornithine and polyamines. However, currently, it remains unknown if the reduction of arginase 1 (Arg1) in myeloid cell impacts amyloidosis. Herein, we produced haploinsufficiency of Arg1 by the hemizygous deletion in myeloid cells using Arg1fl/fl and LysMcreTg/+ mice crossed with APP Tg2576 mice. Our data indicated that Arg1 haploinsufficiency promoted Aß deposition, exacerbated some behavioral impairment, and decreased components of Ragulator-Rag complex involved in mechanistic target of rapamycin complex 1 (mTORC1) signaling and autophagy. Additionally, Arg1 repression and arginine supplementation both impaired microglial phagocytosis in vitro. These data suggest that proper function of Arg1 and arginine metabolism in myeloid cells remains essential to restrict amyloidosis.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Arginase/metabolismo , Transtornos de Deficit da Atenção e do Comportamento Disruptivo/metabolismo , Células Mieloides/fisiologia , Animais , Arginase/genética , Autofagia , Comportamento Animal , Modelos Animais de Doenças , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Transgênicos , Inflamação Neurogênica , Transdução de Sinais
4.
Mol Cell Neurosci ; 102: 103418, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705957

RESUMO

AIMS: The current study utilizes the adeno-associated viral gene transfer system in the CAMKIIα-tTA mouse model to overexpress human wild type TDP-43 (wtTDP-43) and α-synuclein (α-Syn) proteins. The co-existence of these proteins is evident in the pathology of neurodegenerative disorders such as frontotemporal lobar degeneration (FTLD), Parkinson disease (PD), and dementia with Lewy bodies (DLB). METHODS: The novel bicistronic recombinant adeno-associated virus (rAAV) serotype 9 drives wtTDP-43 and α-Syn expression in the hippocampus via "TetO" CMV promoter. Behavior, electrophysiology, and biochemical and histological assays were used to validate neuropathology. RESULTS: We report that overexpression of wtTDP-43 but not α-Syn contributes to hippocampal CA2-specific pyramidal neuronal loss and overall hippocampal atrophy. Further, we report a reduction of hippocampal long-term potentiation and decline in learning and memory performance of wtTDP-43 expressing mice. Elevated wtTDP-43 levels induced selective degeneration of Purkinje cell protein 4 (PCP-4) positive neurons while both wtTDP-43 and α-Syn expression reduced subsets of the glutamate receptor expression in the hippocampus. CONCLUSIONS: Overall, our findings suggest the significant vulnerability of hippocampal neurons toward elevated wtTDP-43 levels possibly via PCP-4 and GluR-dependent calcium signaling pathways. Further, we report that wtTDP-43 expression induced selective CA2 subfield degeneration, contributing to the deterioration of the hippocampal-dependent cognitive phenotype.


Assuntos
Região CA2 Hipocampal/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Potenciação de Longa Duração , Memória , Animais , Região CA2 Hipocampal/fisiologia , Proteínas de Ligação a DNA/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Aprendizagem em Labirinto , Camundongos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , alfa-Sinucleína/metabolismo
5.
Alzheimers Res Ther ; 11(1): 58, 2019 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-31253191

RESUMO

BACKGROUND: Tau stabilizes microtubules; however, in Alzheimer's disease (AD) and tauopathies, tau becomes hyperphosphorylated, aggregates, and results in neuronal death. Our group recently uncovered a unique interaction between polyamine metabolism and tau fate. Polyamines exert an array of physiological effects that support neuronal function and cognitive processing. Specific stimuli can elicit a polyamine stress response (PSR), resulting in altered central polyamine homeostasis. Evidence suggests that elevations in polyamines following a short-term stressor are beneficial; however, persistent stress and subsequent PSR activation may lead to maladaptive polyamine dysregulation, which is observed in AD, and may contribute to neuropathology and disease progression. METHODS: Male and female mice harboring tau P301L mutation (rTg4510) were examined for a tau-induced central polyamine stress response (tau-PSR). The direct effect of tau-PSR byproducts on tau fibrillization and oligomerization were measured using a thioflavin T assay and a N2a split superfolder GFP-Tau (N2a-ssGT) cell line, respectively. To therapeutically target the tau-PSR, we bilaterally injected caspase 3-cleaved tau truncated at aspartate 421 (AAV9 Tau ΔD421) into the hippocampus and cortex of spermidine/spermine-N1-acetyltransferase (SSAT), a key regulator of the tau-PSR, knock out (SSAT-/-), and wild type littermates, and the effects on tau neuropathology, polyamine dysregulation, and behavior were measured. Lastly, cellular models were employed to further examine how SSAT repression impacted tau biology. RESULTS: Tau induced a unique tau-PSR signature in rTg4510 mice, notably in the accumulation of acetylated spermidine. In vitro, higher-order polyamines prevented tau fibrillization but acetylated spermidine failed to mimic this effect and even promoted fibrillization and oligomerization. AAV9 Tau ΔD421 also elicited a unique tau-PSR in vivo, and targeted disruption of SSAT prevented the accumulation of acetylated polyamines and impacted several tau phospho-epitopes. Interestingly, SSAT knockout mice presented with altered behavior in the rotarod task, the elevated plus maze, and marble burying task, thus highlighting the impact of polyamine homeostasis within the brain. CONCLUSION: These data represent a novel paradigm linking tau pathology and polyamine dysfunction and that targeting specific arms within the polyamine pathway may serve as new targets to mitigate certain components of the tau phenotype.


Assuntos
Acetiltransferases/metabolismo , Poliaminas/metabolismo , Estresse Fisiológico , Tauopatias/enzimologia , Acetiltransferases/genética , Animais , Feminino , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/metabolismo
6.
Amino Acids ; 51(3): 513-528, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30604097

RESUMO

Tauopathies consist of intracellular accumulation of hyperphosphorylated and aggregated microtubule protein tau, which remains a histopathological feature of Alzheimer's disease (AD) and frontotemporal dementia. L-Arginine is a semi-essential amino acid with a number of bioactive molecules. Its downstream metabolites putrescine, spermidine, and spermine (polyamines) are critically involved in microtubule assembly and stabilization. Recent evidence implicates altered arginine metabolism in the pathogenesis of AD. Using high-performance liquid chromatographic and mass spectrometric assays, the present study systematically determined the tissue concentrations of L-arginine and its nine downstream metabolites in the frontal cortex, hippocampus, parahippocampal region, striatum, thalamus, and cerebellum in male PS19 mice-bearing human tau P301S mutation at 4, 8, and 12-14 months of age. As compared to their wild-type littermates, PS19 mice displayed early and/or prolonged increases in L-ornithine and altered polyamine levels with age. There were also genotype- and age-related changes in L-arginine, L-citrulline, glutamine, glutamate, and γ-aminobutyric acid in a region- and/or chemical-specific manner. The results demonstrate altered brain arginine metabolism in PS19 mice with the most striking changes in L-ornithine, polyamines, and glutamate, indicating a shift of L-arginine metabolism to favor the arginase-polyamine pathway. Given the role of polyamines in maintaining microtubule stability, the functional significance of these changes remains to be explored in future research.


Assuntos
Arginina/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Tauopatias/metabolismo , Proteínas tau/fisiologia , Animais , Encéfalo/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Tauopatias/patologia
7.
J Immunol Methods ; 432: 51-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26784524

RESUMO

Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseous impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9-GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body following insult or injury. Alternatively, this method might find utility in delivering therapeutic genes for neuroinflammatory conditions.


Assuntos
Células da Medula Óssea , Transplante de Medula Óssea , Encéfalo/patologia , Rastreamento de Células/métodos , Dependovirus/genética , Vetores Genéticos , Inflamação/patologia , Transdução Genética , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Encéfalo/metabolismo , Antígeno CD11b/metabolismo , Modelos Animais de Doenças , Genes Reporter , Terapia Genética/métodos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/terapia , Lentivirus/genética , Camundongos Endogâmicos C57BL , Fenótipo
8.
J Neurotrauma ; 33(19): 1751-1760, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26739819

RESUMO

Traumatic brain injury (TBI) caused by improvised explosive devices (IEDs) is a growing problem in military settings, but modeling this disease in rodents to pre-clinically evaluate potential therapeutics has been challenging because of inconsistency between models. Although the effects of primary blast wave injury have been extensively studied, little is known regarding the effects of noncontact rotational TBIs independent of the blast wave. To model this type of injury, we generated an air cannon system that does not produce a blast wave, but generates enough air pressure to cause rotational TBI. Mice exposed to this type of injury showed deficits in cognitive and motor task acquisition within 1-2 weeks post-injury, but mice tested 7-8 weeks post-injury did not retain any deficits. This suggests that the effects of a single, noncontact rotational TBI are not long lasting. Despite the transient nature of the behavioral deficits, increased levels of phosphorylated tau were observed at 2 and 8 weeks post-injury; however, this tau did not adopt typical pathological structures that have been observed in other TBI models that incorporate blast waves. This was possibly attributed to the fact that this injury was insufficient to induce changes in microglial activation, which was not affected at 2 or 8 weeks post-injury. Taken together, these data suggest that exposure to noncontact, rotational head injury only produces transient cognitive anomalies, but elicits some minor lasting neuropathological changes.

9.
J Neurosci ; 35(44): 14842-60, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538654

RESUMO

Tau accumulation remains one of the closest correlates of neuronal loss in Alzheimer's disease. In addition, tau associates with several other neurodegenerative diseases, collectively known as tauopathies, in which clinical phenotypes manifest as cognitive impairment, behavioral disturbances, and motor impairment. Polyamines act as bivalent regulators of cellular function and are involved in numerous biological processes. The regulation of the polyamines system can become dysfunctional during disease states. Arginase 1 (Arg1) and nitric oxide synthases compete for l-arginine to produce either polyamines or nitric oxide, respectively. Herein, we show that overexpression of Arg1 using adeno-associated virus (AAV) in the CNS of rTg4510 tau transgenic mice significantly reduced phospho-tau species and tangle pathology. Sustained Arg1 overexpression decreased several kinases capable of phosphorylating tau, decreased inflammation, and modulated changes in the mammalian target of rapamycin and related proteins, suggesting activation of autophagy. Arg1 overexpression also mitigated hippocampal atrophy in tau transgenic mice. Conversely, conditional deletion of Arg1 in myeloid cells resulted in increased tau accumulation relative to Arg1-sufficient mice after transduction with a recombinant AAV-tau construct. These data suggest that Arg1 and the polyamine pathway may offer novel therapeutic targets for tauopathies.


Assuntos
Arginase/biossíntese , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Tauopatias/enzimologia , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Arginase/genética , Células HeLa , Hipocampo/enzimologia , Hipocampo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Tauopatias/genética , Proteínas tau/genética
10.
Neurobiol Aging ; 34(6): 1610-20, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23481567

RESUMO

The roles of microglia and macrophages during neuroinflammation and neurodegenerative diseases remain controversial. To date, at least 2 activations states have been suggested, consisting of a classical response (M1) and the alternative response (M2). Identifying selective biomarkers of microglia that representative their functional activation states may help elucidate disease course and enable a better understanding of repair mechanisms. Two cocktails containing either tumor necrosis factor (TNF)-α, interleukin (IL)-12, and IL-1ß (referred to as CKT-1) or IL-13 and IL-4 (referred to CKT-2) were injections into the hippocampus of mice aged 6, 12, or 24 months. Microarray analysis was performed on hippocampal tissue 3 days postinjection. Gene transcripts were compared between CKT-1 versus CKT-2 stimulator cocktails. Several selective transcripts expressed for the CKT-1 included CXCL13, haptoglobin, MARCO, and calgranulin B, whereas a smaller subset of genes was selectively induced by the CKT-2 and consisted of FIZZ1, IGF-1, and EAR 11. Importantly, selective transcripts were induced at all ages by CKT-1, whereas selective gene transcripts induced by CKT-2 decreased with age suggesting an age-related reduction in the IL-4/ IL-13 signaling pathway.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Sistema Nervoso Central/metabolismo , Hipocampo/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Transdução de Sinais/fisiologia
11.
Neurobiol Aging ; 34(6): 1540-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23332170

RESUMO

Alzheimer's disease is characterized by amyloid plaques, neurofibrillary tangles, glial activation, and neurodegeneration. In mouse models, inflammatory activation of microglia accelerates tau pathology. The chemokine fractalkine serves as an endogenous neuronal modulator to quell microglial activation. Experiments with fractalkine receptor null mice suggest that fractalkine signaling diminishes tau pathology, but exacerbates amyloid pathology. Consistent with this outcome, we report here that soluble fractalkine overexpression using adeno-associated viral vectors significantly reduced tau pathology in the rTg4510 mouse model of tau deposition. Furthermore, this treatment reduced microglial activation and appeared to prevent neurodegeneration normally found in this model. However, in contrast to studies with fractalkine receptor null mice, parallel studies in an APP/PS1 model found no effect of increased fractalkine signaling on amyloid deposition. These data argue that agonism at fractalkine receptors might be an excellent target for therapeutic intervention in tauopathies, including those associated with amyloid deposition.


Assuntos
Quimiocina CX3CL1/biossíntese , Modelos Animais de Doenças , Regulação da Expressão Gênica , Tauopatias/genética , Tauopatias/prevenção & controle , Proteínas tau/antagonistas & inibidores , Animais , Quimiocina CX3CL1/genética , Camundongos , Camundongos Transgênicos , Tauopatias/patologia , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...